Uncertainty Propagation and Analysis of Image-guided Surgery
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ABSTRACT

A successful image-guided surgical intervention requiresurate measurement of coordinate systems. Uncertainty i
introduced every time a pose is measured by the opticalirgadystem. When we transform a measured pose into a
different coordinate system, the covariance (which ensdlde uncertainty of the pose) must be propagated to this new
coordinate system. In this paper, we describe a method fgrggrating covariances estimated from registration, inack
and instrument calibration into the tip of the surgical todhis is clinically important, since it is at the tool tip thie
clinician cares about uncertainty. We demonstrate thgptbpagation method, which is computed in real time as the too
moves through space, reliably computes the propagatedianea by comparing our estimate to true covariances from
Monte Carlo simulations.
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1. INTRODUCTION

The introduction of error in image-guided surgery in inabie. It cannot be avoided by simply taking very careful mea-
surements, providing more accurate algorithms, or by iwipginstrument calibration. We can only reduce errors as
much as reasonably possible, calculate a reliable estiofidie uncertainty, and provide a meaningful way to convéy th
information to clinicians.

The success of an image-guided surgical intervention isragent on the accurate measurement of coordinate systems.
Uncertainty is introduced each time data is introduced feanoptical tracking system. When we transform a pose into
a different coordinate system, the covariance (uncegtpintist be propagated to this new frame of reference. The mea-
surement of coordinate systems by optically tracked ins#nis has both rotational and translational errors. Trezef
orientation error on positional error has been studied amgia some cases, be dramatie.

This paper describes a method of propagating covarianoesregistration, calibration, and tracking and studies the
effect of this propagation at the tip of the surgical instaimh The accuracy of the uncertainty propagation is vadidiat
using the heteroscedastic errors in variables (HEIV) algor* Our simulations show that the propagation method reliably
estimates covariance under the assumed noise conditioree tBe covariance propagation is known, we can then study
the key factors influencing the uncertainty. We can ask duestegarding the important contributors for further gses
and determine the tails in our distributions. In this paperfocus on uncertainty propagation, rather than on an aisaly
of the covariances.

2. BACKGROUND

Surgical navigation systems rely on optical tracking tedbgy for determining the pose (position and orientatioh) o
instruments relative to some coordinate frame. Using thatiom and description from Hoff and Vincénand Craicf
we can represent the pose of a rigid bddy} with respect to a coordinate fran{8} with a six element vectoxZ =
[xﬁw,yﬁw, sz,a, B,7]" wherep = xﬁw,yfw,sz is the origin of frame{A} in {B} and«, 3, the angle of
rotation of{A} about the z, y, x axes dB}. Pose can be represented in the equivalent matrix opeatanfith a4 x 4
homogeneous transformation matrix:
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whereR?% is the3 x 3 rotation matrix corresponding to the angles3, . In this paper, we will use the lettér to designate
the equivalent x 4 homogeneous transformation matrix. The homogenous mapiesented the pose of coordinate frame
{B} with respect to{A} is the inverse of the pose ¢A} with respect to{B}: T4 = (TE)~!. If we know the pose of
{A} with respect to{B} and the pose ofB} with respect to{C} then the pose of A} with respect to{ C} is given by
TG =TGTE®

If we have a pose of a rigid body, we can represent the unogytaf the six-element pose with a6 x 6 covariance
matrix Cy = E(AxAxT), the expected value of the square of the difference betweeedtimate and the ground triith.

Our work assumes that a reliable covariance of a rigid tangdtion is available. Finding the rigid transformation
that best matches one point to set to another where the pmirspondences are known is called the fiducial registratio
problem in computer-aided surgery literature. Estimatireggcovariance matrix of fiducial registration parametasieen
studied. Matei and Meer describe an algorithm that prodoptichal estimates of rotation and translation with conficken
intervals obtained from bootstrappifigMa et al.”-8 described a particle filter that estimated the covariancsudfce-
based registration parameters, Moghari and Abolmaésuseaid the unscented Kalman filter to estimate the covariance o
target registration error (TRE). More recently, Maal.! derived an analytic expression for predicting TRE. Dargluko
and FitzpatricR determined cross covariances for TRE and FRE.

3. METHODS

We assume that an optical tracking system measures the pagsarget relative to the tracker’s coordinate system, tvhic
we call the “world” coordinate system. A target attachedgurgical tool has pog®,.; (in world coordinates) which is
encoded as a tracking transformatiB}j°;'¢. Another target attached to the patient has pgse... (in world coordinates)
which is encoded as a tracking transformafigif;;’

ient*
The calibration transformatio’ii‘ig’;;l maps the tool tip coordinates (typically with the origin hettool tip) to tool

coordinates and is the result of a calibration procedure. réfistration transformatidﬁgaTtiem maps patient coordinates
to CT coordinates and is the result of a registration proszdu

The surgeon’s guidance display shows the CT and the trackednt CT coordinates. So we must transform the tool
tip into CT coordinates, as follows:

TCT — TCT (Tworld )71 Tworld Ttool. (2)

tip patient patient tool tip

3.1 Covariance Propagation

Each of the transformation¥¥, in Equation (2) has an associated covariance mailfx that encodes the uncertainty in
the transformation. The eigenvectors and eigenvaluesafdiariance matrix show the principal directions of uraiety
and the magnitudes of the uncertainty in those directionise Oncertainty can arise from tracking err@{°;'¢ and

Cuorld ), from calibration errorC;¢°!), and from registration erroqS.%;. ,.,)-

We want to display to the surgeon the uncertainty of the pddkeotool tip, so we must determine the uncertainty
of the tool tip pose in CT coordinates. That uncertainty,oeled by the covariance matrtxgg, is computed from the
covariances of the transformations on the right hand sidegoftion (2).

The covariances are propagated through the chain of tnanafns in Equation (2) using a method described by Hoff
and Vincent, which they used to propagate head pose covariance in virtadity systems. The following description
is drawn from Hoff and Vincent’s papérthe reader is directed to the original source for more dedaileatment of the
subject.

Given a transformatioy = T x, let Cx be the covariance of and letC,, be the covariance dfI'y,. Then the
covarianceC,, of y is computed as

Cy = JxCxJL +J,CJIL 3)

whereJy = dg/0x andJ,, = dg/0w, for g(w,x) = Ty x. If the transformatiorT, has no uncertainty, the covariance
C, is zero and Equation (3) is simplified.



Thus, given the covariances associated with each tranafamon the right hand side of Equation (2), we can compute
the uncertainty, encoded ig, of the tool tip pose. In our implementation, the Jacobiarrites were estimated
numerically.

3.2 Simulations

We validated this method of covariance propagation thradghte Carlo simulation of a virtual patient and a virtualltoo
In that simulation, calibration uncertainty}(;’;l), tool tracking uncertainty@22;'), and patient tracking uncertainty

(Cuorld y were estimated using an unscented Kalman filter methodibesidn other workl® An estimate of registration

patient
uncertainty CpCaTtiem) was computed based on neurosurgical patient data callati@anderbilt University Medical Center.
The registration uncertainty was computed as follows. peeatively, skin fiducials were placed on the patient’s lshkotl
the patient underwent an MR. These fiducials are visibleénMIR. Intraoperatively, points were taken on the head of the
patient by touching a calibrated tool to skin fiducials (segiFe 1). A registration of the collected points to the MRigat
space establishes correspondence. The registratioﬁmarcgﬁiem) was computed based on 10,000 HEIV estimates
of Matei and Meef, which optimally solves the absolute orientation problendemthe assumption of heteroscedastic
noise.

Figure 1. An optically-tracked calibrated tool collectinggistration from skin fiducials from a patient undergoingeurosurgical
procedure at Vanderbilt University Medical Center.

In each simulated trial, the pose of the patient target reethfixed and the tool target was rotated about its center
by applying uniformly sampled rotations from50° to 50° at 10° increments about the x axis and successive rotations
drawn in the same way about the y axis. For each such pose, mputed the covariance and propagated it through
the chain of transformations of Equation (2). The resultog tip covariancecng , was compared to a gold standard
covariance computed using 10,000 estimates from the HEJ@rdhm which produces an optimal estimate of rotation

and translation under heteroscedastic noise.
The HEIV algorithm uses a model of the virtual tracking tasgen the patient and on the tool to compute ;¢

tient

andTword transformations. Our virtual targets consisted of four Lia&rkers in a quadrilateral configuration. The marker

tool



coordinates were [0 -50 8][-50 0 O], [0 50 O], and [50 0 0] in millimeters in the tool coordinate system. The tip of the
surgical tool was defined as [0 0 -200h the tool coordinates. The camera and tool models are sirofigure 2.

<7
(0,-200,0)

Figure 2. Target model (left) and optical tracking systemfiguration (right) used in the simulations; all units aremiillimeters. The
target consisted of four markers arranged in a quadrilatéi@asurement noise in the viewing direction, —z, was latpan in the
viewing plane. The patient target was oriented to face theeca, as shown in the figure.

4. RESULTS

In the first simulation, the calibration covariance in thedf the tooI,Cﬁ;’;jl, and the registration covarian((égafiem, were
set to zero. Figure 3 plots the difference between the caweeis measured by our model and those of the gold standard
HEIV algorithm. In the figure, the square root of the eigeneslof the covariances are plotted for each angle of rotation

applied in the simulation. The propagated covariancestares in Figure 4.

Figure 5 shows the effect on the tip of the tool when a nonzalibmation covariance is incorporated into the model.
In this example, the calibration covarian@;’;l, was drawn from a previous study of calibration uncertaifityhere the
calibration covariance had eigenvalues with square r@84[0.40 0.917 in the position of the tip of the surgical tool (in
millimeters).

Figure 6 shows the effect on the tip of the tool when calilbratiovariance and registration covariance are nonzers. Thi
example uses registration covariance computed based amadatired during a neurosurgical intervention as destiibe
the previous section. In this example, the registratioratance had eigenvalues with square roots [0.25 0.91 1f27]
position (in millimeters) and square roots [0.00 0.00 0" 16} orientation (in degrees).

Figure 7 depicts a visualization of the covariance on thetithe surgical tool. The surgical tool is rendered in cyan.
The covariance is applied to the pose of the tool using a ndedlescribed in other wotR and rendered in magenta lines.
The spread of the lines corresponds to approximately tHe@gtfidence interval.

sqrt(el) in mm
sqrt(ed) in mm

4
-20 30
y rot in deg 50 -50 x

-30 E - -30 30
ot in deg y rot in deg -50 -0 x rot in deg y rot in deg -50 -0 x rot in deg

Figure 3. The differences in the covariance of the tip posii (left), y (center), z (right) measured by our model arelgbld standard
covariance computed from 10,000 HEIV simulations. The egjuaots of the eigenvalues of the covariance matrix are shiow
rotations from—>50° to 50° at 10° increments about X and Y.

5. DISCUSSION

The covariance propagation model computes estimates @friamaty in real time. In other work® we used the model
while actively navigating with the tool with no discernibég in the display.
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Figure 4. Covarianceﬁ)ﬁf predicted by our model, with zeroed registration covamaaad zeroed calibration covariance, for tip

position x (left), y (center), z (right). Square roots of #igenvalues of the covariance matrix are shown for rotatfosm —50° to 50°
at10° increments about X and V.
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Figure 5. Covariance@fg predicted by our model, with zeroed registration covaranhere the calibration covariance had eigenvalues

with square roots [0.31 0.40 0.92for tip position x (left), y (center), z (right). Square reaif the eigenvalues of the covariance matrix
are shown for rotations from50° to 50° at 10° increments about X and Y.
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Figure 6. Covariance@ﬁf predicted by our model, with registration covariance arlibation covariance, for tip position x (left), y

(center), z (right). Square roots of the eigenvalues of tvaigance matrix are shown for rotations fren30° to 50° at 10° increments
about Xand Y.



\

Figure 7. A visualization of the uncertainty in the tip of rgical toolCy;,, predicted by our model based on data acquired intraoper-
atively. The thicker cyan tube corresponds to the tool, hirener cyan tube is the path of the tool, and the magenta te@esent the
uncertainty. The spread of the magenta lines corresporgspmximately the 95th confidence interval.

cT

The values that we chose for registration covariance wemeetefrom patient data; hence, the propagated covariances
are indicative of what we would expect to encounter in theratieg room. These values were based on point-based
registration from fiducials; the registration was not rediosing, for example, features from the cortical surfacenddethe
propagated covariances presented here do not considdfabeod brain shift that occurs during neurosurgical prazees
which is known to have a significant effect on accur&tciurthermore, the registration covariance that we chosevbgd
little rotational uncertainty. The purpose of the paper weshow that we could propagate the covariances, not to asldre
the potential magnitude of uncertainty.

For simplicity, we computed actual registration covar@smbased on 10,000 registration estimates rather than asing
TRE estimatot:2 Ideally, the registration algorithm would compute a reléabovariance of the registration parameters
internally. Moreover, our registration covariance did taie into account the uncertainty in the tracked tool thguaed
the registration points.

6. CONCLUSIONS

We proposed and validated a covariance propagation teghiigat can be used at interactive rates in the operating.room
We demonstrated that our covariance estimates match wedl guld standard covariances computed using the HEIV
algorithm. The next step in this research is to formalizedhalysis of the uncertainty and to determine the greatest
contributors of uncertainty.

A crucial step in error and uncertainty analysis is the megifioil conveyance of uncertainty to clinicians. The vi-
sualization of uncertainty is absent from current comnatrdmputer-assisted surgery systems. In fact, the onbr err
information (if any) given to surgeons is a scalar value espnting registration error. Anatomical data is presetuélde
surgeon as though it were perfect. A surgeon who is not awfatésouncertainty can make critical errors (consider, for
example, excising a brain tumor or inserting a screw intcsthiee).
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