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ABSTRACT

A successful image-guided surgical intervention requiresaccurate measurement of coordinate systems. Uncertainty is
introduced every time a pose is measured by the optical tracking system. When we transform a measured pose into a
different coordinate system, the covariance (which encodes the uncertainty of the pose) must be propagated to this new
coordinate system. In this paper, we describe a method for propagating covariances estimated from registration, tracking,
and instrument calibration into the tip of the surgical tool. This is clinically important, since it is at the tool tip that the
clinician cares about uncertainty. We demonstrate that thepropagation method, which is computed in real time as the tool
moves through space, reliably computes the propagated covariance by comparing our estimate to true covariances from
Monte Carlo simulations.
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1. INTRODUCTION

The introduction of error in image-guided surgery in inevitable. It cannot be avoided by simply taking very careful mea-
surements, providing more accurate algorithms, or by improving instrument calibration. We can only reduce errors as
much as reasonably possible, calculate a reliable estimateof the uncertainty, and provide a meaningful way to convey this
information to clinicians.

The success of an image-guided surgical intervention is contingent on the accurate measurement of coordinate systems.
Uncertainty is introduced each time data is introduced froman optical tracking system. When we transform a pose into
a different coordinate system, the covariance (uncertainty) must be propagated to this new frame of reference. The mea-
surement of coordinate systems by optically tracked instruments has both rotational and translational errors. The effect of
orientation error on positional error has been studied and can, in some cases, be dramatic.1–3

This paper describes a method of propagating covariances from registration, calibration, and tracking and studies the
effect of this propagation at the tip of the surgical instrument. The accuracy of the uncertainty propagation is validated
using the heteroscedastic errors in variables (HEIV) algorithm.4 Our simulations show that the propagation method reliably
estimates covariance under the assumed noise conditions. Once the covariance propagation is known, we can then study
the key factors influencing the uncertainty. We can ask questions regarding the important contributors for further analysis
and determine the tails in our distributions. In this paper,we focus on uncertainty propagation, rather than on an analysis
of the covariances.

2. BACKGROUND

Surgical navigation systems rely on optical tracking technology for determining the pose (position and orientation) of
instruments relative to some coordinate frame. Using the notation and description from Hoff and Vincent5 and Craig,6

we can represent the pose of a rigid body{A} with respect to a coordinate frame{B} with a six element vectorxB
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whereRB
A is the3×3 rotation matrix corresponding to the anglesα, β, γ. In this paper, we will use the letterT to designate

the equivalent4×4 homogeneous transformation matrix. The homogenous matrixrepresented the pose of coordinate frame
{B} with respect to{A} is the inverse of the pose of{A} with respect to{B}: TA

B = (TB
A)

−1. If we know the pose of
{A} with respect to{B} and the pose of{B} with respect to{C} then the pose of{A} with respect to{C} is given by
TC

A = TC
BT

B
A .6

If we have a pose of a rigid body, we can represent the uncertainty of the six-element posex with a 6 × 6 covariance
matrixCx = E(∆x∆xT ), the expected value of the square of the difference between the estimate and the ground truth.5

Our work assumes that a reliable covariance of a rigid transformation is available. Finding the rigid transformation
that best matches one point to set to another where the point correspondences are known is called the fiducial registration
problem in computer-aided surgery literature. Estimatingthe covariance matrix of fiducial registration parameters has been
studied. Matei and Meer describe an algorithm that producedoptimal estimates of rotation and translation with confidence
intervals obtained from bootstrapping.4 Ma et al.7, 8 described a particle filter that estimated the covariance ofsurface-
based registration parameters, Moghari and Abolmaesumi2 used the unscented Kalman filter to estimate the covariance of
target registration error (TRE). More recently, Maet al.1 derived an analytic expression for predicting TRE. Danilchenko
and Fitzpatrick9 determined cross covariances for TRE and FRE.

3. METHODS

We assume that an optical tracking system measures the pose of a target relative to the tracker’s coordinate system, which
we call the “world” coordinate system. A target attached to the surgical tool has poseptool (in world coordinates) which is
encoded as a tracking transformationTworld

tool . Another target attached to the patient has poseppatient (in world coordinates)
which is encoded as a tracking transformationTworld

patient.

The calibration transformationTtool
tip maps the tool tip coordinates (typically with the origin at the tool tip) to tool

coordinates and is the result of a calibration procedure. The registration transformationTCT
patient maps patient coordinates

to CT coordinates and is the result of a registration procedure.

The surgeon’s guidance display shows the CT and the tracked tool in CT coordinates. So we must transform the tool
tip into CT coordinates, as follows:

TCT
tip = TCT

patient (T
world
patient)

−1 Tworld
tool Ttool

tip . (2)

3.1 Covariance Propagation

Each of the transformations,Ty
x, in Equation (2) has an associated covariance matrix,Cy

x, that encodes the uncertainty in
the transformation. The eigenvectors and eigenvalues of the covariance matrix show the principal directions of uncertainty
and the magnitudes of the uncertainty in those directions. The uncertainty can arise from tracking error (Cworld

tool and
Cworld

patient), from calibration error (Ctool
tip ), and from registration error (CCT

patient).

We want to display to the surgeon the uncertainty of the pose of the tool tip, so we must determine the uncertainty
of the tool tip pose in CT coordinates. That uncertainty, encoded by the covariance matrixCCT

tip , is computed from the
covariances of the transformations on the right hand side ofEquation (2).

The covariances are propagated through the chain of transformations in Equation (2) using a method described by Hoff
and Vincent,5 which they used to propagate head pose covariance in virtualreality systems. The following description
is drawn from Hoff and Vincent’s paper;5 the reader is directed to the original source for more detailed treatment of the
subject.

Given a transformationy = Twx, let Cx be the covariance ofx and letCw be the covariance ofTw. Then the
covarianceCy of y is computed as

Cy = JxCxJ
T
x
+ JwCwJ

T
w

(3)

whereJx = ∂g/∂x andJw = ∂g/∂w, for g(w,x) = Twx. If the transformationTw has no uncertainty, the covariance
Cw is zero and Equation (3) is simplified.



Thus, given the covariances associated with each transformation on the right hand side of Equation (2), we can compute
the uncertainty, encoded asCCT

tip , of the tool tip pose. In our implementation, the Jacobian matrices were estimated
numerically.

3.2 Simulations
We validated this method of covariance propagation throughMonte Carlo simulation of a virtual patient and a virtual tool.
In that simulation, calibration uncertainty (Ctool

tip ), tool tracking uncertainty (Cworld
tool ), and patient tracking uncertainty

(Cworld
patient) were estimated using an unscented Kalman filter method described in other work.10 An estimate of registration

uncertainty (CCT
patient) was computed based on neurosurgical patient data collected at Vanderbilt University Medical Center.

The registration uncertainty was computed as follows. Preoperatively, skin fiducials were placed on the patient’s skull and
the patient underwent an MR. These fiducials are visible in the MR. Intraoperatively, points were taken on the head of the
patient by touching a calibrated tool to skin fiducials (see Figure 1). A registration of the collected points to the MR patient
space establishes correspondence. The registration covariance (CCT

patient) was computed based on 10,000 HEIV estimates
of Matei and Meer,4 which optimally solves the absolute orientation problem under the assumption of heteroscedastic
noise.

Figure 1. An optically-tracked calibrated tool collectingregistration from skin fiducials from a patient undergoing aneurosurgical
procedure at Vanderbilt University Medical Center.

In each simulated trial, the pose of the patient target remained fixed and the tool target was rotated about its center
by applying uniformly sampled rotations from−50◦ to 50◦ at 10◦ increments about the x axis and successive rotations
drawn in the same way about the y axis. For each such pose, we computed the covariance and propagated it through
the chain of transformations of Equation (2). The resultingtool tip covariance,CCT

tip , was compared to a gold standard
covariance computed using 10,000 estimates from the HEIV algorithm,4 which produces an optimal estimate of rotation
and translation under heteroscedastic noise.

The HEIV algorithm uses a model of the virtual tracking targets on the patient and on the tool to compute theTworld
patient

andTworld
tool transformations. Our virtual targets consisted of four LEDmarkers in a quadrilateral configuration. The marker



coordinates were [0 -50 0]T, [-50 0 0]T, [0 50 0]T, and [50 0 0]T in millimeters in the tool coordinate system. The tip of the
surgical tool was defined as [0 0 -200]T in the tool coordinates. The camera and tool models are shownin Figure 2.

Figure 2. Target model (left) and optical tracking system configuration (right) used in the simulations; all units are inmillimeters. The
target consisted of four markers arranged in a quadrilateral. Measurement noise in the viewing direction, –z, was larger than in the
viewing plane. The patient target was oriented to face the camera, as shown in the figure.

4. RESULTS

In the first simulation, the calibration covariance in the tip of the tool,Ctool
tip , and the registration covariance,CCT

patient, were
set to zero. Figure 3 plots the difference between the covariances measured by our model and those of the gold standard
HEIV algorithm. In the figure, the square root of the eigenvalues of the covariances are plotted for each angle of rotation
applied in the simulation. The propagated covariances are shown in Figure 4.

Figure 5 shows the effect on the tip of the tool when a nonzero calibration covariance is incorporated into the model.
In this example, the calibration covariance,Ctool

tip , was drawn from a previous study of calibration uncertainty,10 where the
calibration covariance had eigenvalues with square roots [0.31 0.40 0.91]T in the position of the tip of the surgical tool (in
millimeters).

Figure 6 shows the effect on the tip of the tool when calibration covariance and registration covariance are nonzero. This
example uses registration covariance computed based on data acquired during a neurosurgical intervention as described in
the previous section. In this example, the registration covariance had eigenvalues with square roots [0.25 0.91 1.27]T for
position (in millimeters) and square roots [0.00 0.00 0.10]T for orientation (in degrees).

Figure 7 depicts a visualization of the covariance on the tipof the surgical tool. The surgical tool is rendered in cyan.
The covariance is applied to the pose of the tool using a method described in other work10 and rendered in magenta lines.
The spread of the lines corresponds to approximately the 95th confidence interval.

Figure 3. The differences in the covariance of the tip position x (left), y (center), z (right) measured by our model and the gold standard
covariance computed from 10,000 HEIV simulations. The square roots of the eigenvalues of the covariance matrix are shown for
rotations from−50

◦ to 50
◦ at10◦ increments about X and Y.

5. DISCUSSION

The covariance propagation model computes estimates of uncertainty in real time. In other work,10 we used the model
while actively navigating with the tool with no discerniblelag in the display.



Figure 4. CovariancesCCT
tip predicted by our model, with zeroed registration covariance and zeroed calibration covariance, for tip

position x (left), y (center), z (right). Square roots of theeigenvalues of the covariance matrix are shown for rotations from−50
◦ to 50

◦

at10◦ increments about X and Y.

Figure 5. CovariancesCCT
tip predicted by our model, with zeroed registration covariance where the calibration covariance had eigenvalues

with square roots [0.31 0.40 0.91]T for tip position x (left), y (center), z (right). Square roots of the eigenvalues of the covariance matrix
are shown for rotations from−50

◦ to 50
◦ at10◦ increments about X and Y.

Figure 6. CovariancesCCT
tip predicted by our model, with registration covariance and calibration covariance, for tip position x (left), y

(center), z (right). Square roots of the eigenvalues of the covariance matrix are shown for rotations from−50
◦ to 50

◦ at10◦ increments
about X and Y.



Figure 7. A visualization of the uncertainty in the tip of thesurgical toolCCT
tip predicted by our model based on data acquired intraoper-

atively. The thicker cyan tube corresponds to the tool, the thinner cyan tube is the path of the tool, and the magenta linesrepresent the
uncertainty. The spread of the magenta lines corresponds toapproximately the 95th confidence interval.

The values that we chose for registration covariance were derived from patient data; hence, the propagated covariances
are indicative of what we would expect to encounter in the operating room. These values were based on point-based
registration from fiducials; the registration was not refined using, for example, features from the cortical surface. Hence, the
propagated covariances presented here do not consider the effect of brain shift that occurs during neurosurgical procedures
which is known to have a significant effect on accuracy.11 Furthermore, the registration covariance that we chose hadvery
little rotational uncertainty. The purpose of the paper wasto show that we could propagate the covariances, not to address
the potential magnitude of uncertainty.

For simplicity, we computed actual registration covariances based on 10,000 registration estimates rather than usinga
TRE estimator.1–3 Ideally, the registration algorithm would compute a reliable covariance of the registration parameters
internally. Moreover, our registration covariance did nottake into account the uncertainty in the tracked tool that acquired
the registration points.

6. CONCLUSIONS

We proposed and validated a covariance propagation technique that can be used at interactive rates in the operating room.
We demonstrated that our covariance estimates match well with gold standard covariances computed using the HEIV
algorithm. The next step in this research is to formalize theanalysis of the uncertainty and to determine the greatest
contributors of uncertainty.

A crucial step in error and uncertainty analysis is the meaningful conveyance of uncertainty to clinicians. The vi-
sualization of uncertainty is absent from current commercial computer-assisted surgery systems. In fact, the only error
information (if any) given to surgeons is a scalar value representing registration error. Anatomical data is presentedto the
surgeon as though it were perfect. A surgeon who is not aware of this uncertainty can make critical errors (consider, for
example, excising a brain tumor or inserting a screw into thespine).
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